Tutorial 6

Bimatrix games

Let A, B be two $m \times n$ matrices. In a two-person game, if A is the payoff matrix for Player I, and B is the payoff matrix for Player II, then we call this game a bimatrix game with bi-matrix (A, B).

1. Non-cooperative games

Nash equilibrium

We call a pair of probability vectors $(\boldsymbol{p}, \boldsymbol{q})$ $(\boldsymbol{p} \in \mathcal{P}^m, \boldsymbol{q} \in \mathcal{P}^n)$ a Nash equilibrium for (A, B) if

- (i) $pBy^T \leq pBq^T$, for any $y \in \mathcal{P}^n$.
- (ii) $\boldsymbol{x} A \boldsymbol{q}^T \leq \boldsymbol{p} A \boldsymbol{q}^T$, for any $\boldsymbol{x} \in \mathcal{P}^m$.

Theorem 1 (Nash Theorem). Every bimatrix game has at least one Nash equilibrium.

Solve a non-cooperative game: find all Nash equilibria and the corresponding payoff pairs.

The case that A, B are 2×2 matrices

In this case, there is a simple method to find all Nash equilibria: for $x, y \in [0, 1]$, let

$$\pi(x,y) = \begin{pmatrix} x & 1-x \end{pmatrix} A \begin{pmatrix} y \\ 1-y \end{pmatrix}, \rho(x,y) = \begin{pmatrix} x & 1-x \end{pmatrix} B \begin{pmatrix} y \\ 1-y \end{pmatrix}$$

be the payoff functions of Player I and Player II respectively. Find two sets

 $P = \{(x, y) : \pi(x, y) \text{ attains its maximum at } x \text{ for fixed } y\},\$

 $Q = \{(x, y) : \rho(x, y) \text{ attains its maximum at } y \text{ for fixed } x\}.$

Then the set of all Nash equilibria is given by

$$\{(\boldsymbol{p},\boldsymbol{q}): \boldsymbol{p}=(x,1-x), \boldsymbol{q}=(y,1-y), (x,y)\in P\cap Q\}.$$

2. Cooperative games

Nash bargaining model

We call an $m \times n$ matrix $P = (p_{ij})$ a probability matrix if $p_{ij} \geq 0$ and $\sum_{i,j} p_{ij} = 1$. In this case, we write $P \in \mathcal{P}^{m \times n}$.

In a cooperative game, each $P \in \mathcal{P}^{m \times n}$ gives a **joint strategy**, and we denote the corresponding payoff to Player I and Player II by

$$u(P) = \sum_{i,j} p_{ij} a_{ij}, \ v(P) = \sum_{i,j} p_{ij} b_{ij}.$$

Cooperative region:

$$\mathcal{R} := \operatorname{conv}(\{(a_{ij}, b_{ij}) : 1 \le i \le m, 1 \le j \le n\})$$
$$= \left\{ \sum_{ij} p_{ij}(a_{ij}, b_{ij}) : P = (p_{ij}) \in \mathcal{P}^{m \times n} \right\}.$$

Status quo point: Usually, we let this point be

$$(\mu, \nu) = (v_A, v_{BT}).$$

Pareto optimal point: a point $(u, v) \in \mathcal{R}$ is said to pareto optimal if

$$u' \ge u, v' \ge v \Rightarrow u' = u, v' = v.$$

Bargaining set: define the bargaining set to be

{pareto optimal points}
$$\cap \{(u, v) \in \mathcal{R} : u \ge \mu, v \ge \nu\}.$$

Bargaining function: let $U = \{(u, v) : u > \mu, v > \nu\}$. Define the bargaining function by

$$g(u,v) = \begin{cases} (u-\mu)(v-\nu) & \text{if } U \neq \emptyset, \\ u+v & \text{otherwise.} \end{cases}$$

Arbitration pair: define the arbitration pair to be the unique point (α, β) in \mathcal{R} , such that

$$g(\alpha, \beta) = \max\{g(u, v) : (u, v) \in \text{bargaining set}\}.$$

Exercise 1. Consider a two-person game with bimatrix

$$(A,B) = \begin{pmatrix} (2,1) & (4,3) \\ (6,2) & (3,1) \end{pmatrix}.$$

- (i) Find v_A, v_{B^T} .
- (ii) Find all Nash equlibria.
- (iii) Find and sketch the bargaining set. Find the arbitration pair.

Solution. (i) For $x \in [0, 1]$, we have

$$(x, 1-x)A = (x, 1-x) \begin{pmatrix} 2 & 4 \\ 6 & 3 \end{pmatrix} = (6-4x, 3+x).$$

Let 6-4x=3+x, we have $x=\frac{3}{5}$ and $v_A=\frac{18}{5}$. Similarly, we have

$$(x, 1-x)B^T = (x, 1-x) \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} = (3-2x, 1+x).$$

Let 3 - 2x = 1 + x, we have $x = \frac{2}{3}$ and $v_{B^T} = \frac{5}{3}$.

(ii) For $x, y \in [0, 1]$, let

$$\pi(x,y) = \begin{pmatrix} x & 1-x \end{pmatrix} A \begin{pmatrix} y \\ 1-y \end{pmatrix}, \rho(x,y) = \begin{pmatrix} x & 1-x \end{pmatrix} B \begin{pmatrix} y \\ 1-y \end{pmatrix}.$$

We need to find

 $P = \{(x, y) : \pi(x, y) \text{ attains its maximum at } x \text{ for fixed } y\},\$

 $Q = \{(x, y) : \rho(x, y) \text{ attains its maximum at } y \text{ for fixed } x\}.$

To find the set P, consider

$$A \begin{pmatrix} y \\ 1 - y \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 6 & 3 \end{pmatrix} \begin{pmatrix} y \\ 1 - y \end{pmatrix} = \begin{pmatrix} 4 - 2y \\ 3 + 3y \end{pmatrix}.$$

Then we have 4-2y=3+3y if $y=\frac{1}{5},\, 4-2y>3+3y$ if $0\leq y<\frac{1}{5}$ and 4-2y<3+3y if $\frac{1}{5}< y\leq y$. Hence

$$P = \left\{ (x, \frac{1}{5}) : 0 \le x \le 1 \right\} \bigcup \left\{ (1, y) : 0 \le y < \frac{1}{5} \right\} \bigcup \left\{ (0, y) : \frac{1}{5} < y \le 1 \right\}.$$

To find the set Q, consider

$$(x, 1-x)B = (x, 1-x) \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} = (2-x, 2x+1).$$

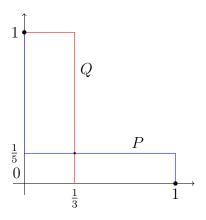


Figure 1

We have 2-x=2x+1 if $x=\frac{1}{3},\ 2-x>2x+1$ if $0\leq x<\frac{1}{3}$ and 2-x<2x+1 if $\frac{1}{3}< x\leq 1$. Hence

$$Q = \left\{ (\frac{1}{3}, y) : 0 \le y \le 1 \right\} \bigcup \left\{ (x, 1) : 0 \le x < \frac{1}{3} \right\} \bigcup \left\{ (x, 0) : \frac{1}{3} < x \le 1 \right\}.$$

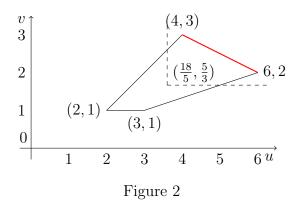
Draw the graph of P and Q as in Figure 1. Hence we have

$$P \cap Q = \left\{ (0,1), (\frac{1}{3}, \frac{1}{5}), (1,0) \right\}.$$

For $\mathbf{p} = (0, 1), \mathbf{q} = (1, 0),$

$$\pi(\boldsymbol{p},\boldsymbol{q}) = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 6 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 6, \ \rho(\boldsymbol{p},\boldsymbol{q}) = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 2.$$

Similarly, we have for $p = (1,0), q = (0,1), \pi(p,q) = 4, \rho(p,q) = 3$ and for $p = (\frac{1}{3}, \frac{2}{3}), q = (\frac{1}{5}, \frac{4}{5}), \pi(p,q) = \frac{18}{5}, \rho(p,q) = \frac{5}{3}$. We may list the Nash



equilibria and the corresponding payoff pairs in the following table.

p	$oldsymbol{q}$	(π, ρ)
(0, 1)	(1,0)	(6,2)
(1,0)	(0,1)	(4,3)
$\left(\frac{1}{3},\frac{2}{3}\right)$	$\left(\frac{1}{5},\frac{4}{5}\right)$	$\left(\frac{18}{5},\frac{5}{3}\right)$

(iii) Draw the cooperative region as in Figure 2. Hence the bargaining set is the line segment joining (6,2) and (4,3). To find the arbitration pair, consider

$$g(u,v) = (u - \frac{18}{4})(v - \frac{5}{3}).$$

Note that the line joining (6,2) and (4,3) is given by $v=-\frac{1}{2}u+5$. Hence in the bargaining set,

$$g(u,v) = (u - \frac{18}{5})(-\frac{1}{2}u + 5 - \frac{5}{3}) = -\frac{1}{2}u^2 + \frac{77}{15}u - 12.$$

Note that g attains its maximum at $u = \frac{77}{15}$, $v = \frac{73}{30}$. Hence the arbitrary pair is $(\frac{77}{15}, \frac{73}{30})$.